Миноры и алгебраические дополнения. Теорема Лапласа

Минором Мij квадратной матрицы n-го порядка для элемента аij называется определитель (n-1)-ого порядка, полученный с данного вычёркиванием i-ой строки и j-ого столбца.

Алгебраическое дополнение элемента определителя определитель

где - минор

элемента .

Теорема Лапласа. В данной квадратной матрице А(n x n ) вычеркнем k строк (1£k£n). Тогда равно сумме произведений всевозможных миновров к-того порядка из данных строк на их алгебраические дополнения: . То же для столбцов. Теорема удобна для матриц с большим кол-вом нулей.

3.1 Определители 2-го и 3-го порядков. Понятие определителя n-го порядка.

Квадр матрицей A порядка n можно сопоставить число detA(∆A,|A|) называемое определителем и определяемое: n=2 a11*a22-a12*a21; n=3 a11a22a33+a21a32a13+a12a23a31-a31a22a13-a32a23a11-a21a12a33. Теорема: опред 3-его порядка = сумме произв элементов любой его строки (столбца) на их алг допол. Теорема: сумма произ элементов строки(столбца) определителя на алг допол соотв элементов др. строки(столбца)=0.

С помощью опред 4-ого порядка можно посчитать опред n-ого порядка. Для опред любых порядков остаются в силе определение минора и алг доп некоторого элемента, а также 2-теоремы об алг доп. Обозначим Mik –минор для элемента Аik и для определителя n-ого порядка: Aik=(-1)i+kMik. Пусть D-опред n-ого порядка. Раскрывая его сначала по элементам i-той строки, а затем по – k-ого столбца в силу теоремы1 получим D=ai1Ai1+…ainAin. D=a1kA1k+…ankAnk. C другой стороны, если i не=j и kне=l, то D=ai1A1i+…+ajnAni=0; D=a1kA1l+…ankAnl=0. Теорема: сумма все произведений элементов любой строки определителя на соотв алг доп равна этому определителю. Замечание: определитель треуг матрицы А равен произ элементов, стоящих на диагонали. Теорема: опред произ 2х матриц одинакового порядка=произв опред n-ого порядка. Теорема: опред матрицы порядка n равен сумме произ всевозможн миноров k-ого порядка (k

Свойства Определителей

Св-ва: 1)Определитель не измениться, если его строки заменить столбцами и наоборот; 2) При перестановке 2-х парал рядов опред меняет знак на противоположный; 3)Определитель, имеющ два одинаковых ряда=0; 4)Общий множитель элементов какого-то ряда опред, можно вынести за знак опред; 5)если все элем ряда пропорц соотв элем парал ряда, то такой опред=0; 6)если все элем строки(столбца) определителя=0, то опред=0; 7) если элем определителя представ собой суммы двух слогаемых, то опред может быть разложен на сумму двух соотв определителей; 8)Определитель не изменится, если к элем одного ряда прибавить соотв элементы парал ряда, умноженного на число; 9)для разлож опред обычно выбирают тот ряд, где есть нулевые элементы, т.к. соотв им слаг будут=0; 10)сумма произведений элементов какого-либо ряда определителя на алг. дополнение параллельного ряда соотв элементов равно 0;

referatxmt.nugaspb.ru maintain.opsreferat.ru refalyg.ostref.ru vhs.deutsch-service.ru Главная Страница