Электронные облака и молекулы

Атомы тоже составлены из сфер. Если рассмотреть атом водорода, то протон сжат в центре, а электрон находится от него где-то очень далеко и вращается вокруг него по орбите. Если бы протон был размером с мяч для игры в гольф, то электрон находился бы от него на расстоянии футбольного поля – и этот электрон движется действительно очень быстро! Я помню: когда я изучал физику, то не мог поверить, что этот маленький электрон, размером с невидимое глазу острие булавки, кружится и кружится в некоем микроскопическом пространстве со скоростью девять десятых скорости света. Это значит, что электрон совершает путешествие вокруг протона расстоянием около 170000 миль ежесекундно, вокруг чего-то, что даже увидеть невозможно! Мой ум был в полном смятении! Я пошёл домой, лёг на кровать и долго глядел в потолок. Для меня это было просто непостижимо.

Этот маленький электрон совершает обороты так быстро, что он кажется облаком. В самом деле, его так и называют – электронное облако. Там только один электрон, но движется он так быстро, что кажется, будто он создаёт вокруг центрального протона сферу. Это подобно телеэкрану, где в каждый момент времени всего лишь один электронный луч в один миг проходит по экрану, намеренно и тщательно перемещаясь по экрану вниз, зигзагами туда и обратно, пока не пройдёт весь путь до самого края, и затем начинает всё сначала. Он проделывает это так быстро, что видится очень правдоподобное изображение.

Итак, сферы являются первичными составляющими воспринимаемой нами Реальности. Хотя электронная орбита описывает сферу, она может описывать и другие модели, как например, восьмёрку. Физики смогли расчитать это только для водорода, и до сих пор они только строят предположения относительно остальных. Если у атома слишком много или слишком мало электронов и он имеет либо положительный, либо отрицательный заряд, его называют ионом. Таким образом, первичными характеристиками атома являются его величина и заряд (Рис.6-30). Эти два главных фактора определяют, смогут ли различные атомы войти в состав одной молекулы. Есть ещё и другие тонкие факторы, но главными являются размер и заряд.

Рис.6-31 показывает, как атомы сочетаются. Это были главные модели, известные долгое время, до тех пор, пока не обнаружили существование квази-кристаллов. В этой таблице показаны различные разновидности атомов. Буква А показывает линейную модель с меньшим атомом в середине. Буква В показывает треугольную модель из трёх с меньшим атомом в середине. Маленький атом на самом деле может здесь быть или отсутствовать. Буква С показывает тетраэдральную модель, с одним атомом в середине или без него. Буква D показывает октаэдральную модель и буква Е показывает кубическую модель. Теперь, благодаря новой научной информации, мы можем добавить икосаэдральную и додекаэдральную модели.

При процессе кристаллизации атомы всегда выстраиваются определённым образом (Рис.6-32). Они формируются, скажем, в куб и затем этот куб выстраивает рядом с собой другой куб и рядом с тем – ещё один куб и вскоре получается куб, связанный с другим кубом, который в свою очередь, связан со следующим кубом и так далее - формируя то, что именуется решёткой. Существуют всевозможные способы, какими атомы могут объединяться. Получающиеся в результате этого молекулы всегда связаны со священной геометрией и пятью Платоновыми телами. Удивительно то, как эти маленькие атомы знают, что следует отправляться именно в эти определённые места, особенно, если они составляют нечто очень, очень сложное!

Даже проникнув в эту сложную молекулу (Рис.6-33) и разделив её на части, можно увидеть внутри неё фигуры, и они всегда соответствуют одному из пяти Платоновых тел – независимо от того, что это за структура. Неважно, как это называется – металл, кристалл, что-то ещё – они всегда сводятсяк одной из этих первичных пяти фигур. По мере того, как мы будем в это проникать глубже, я покажу вам больше примеров.

Шесть категорий кристаллов

Теперь мы приступим к кристаллам. Существует по крайней мере сто тысяч кристаллов различного рода. Если вы когда-то бывали на Выставке Самоцветов и Минералов в Тусоне (Tucson Gem and Mineral Show), то вы точно знаете, о чём я говорю. Эта выставка занимает около восьми или десяти отелей, и каждое помещение этих многоэтажных отелей заполнено кристаллами. В зале вы увидите все самоцветы. Существует много-много различного рода кристаллов. И их находят ещё; почти ежегодно обнаруживается восемь, девять, десять совершенно новых кристаллов, доселе никому неизвестных. Но независимо от того, столько существует кристаллов, все они могут быть рассортированы по шести категориям: изометрические, тетрагональные, гексагональные, орторомбические, моноклинальные и триклинальные (Рис.6-34). И все эти шесть систем, используемых для классификации всех известных кристаллов, являются производными куба, одного из Платоновых тел. Важно, под каким углом вы рассматриваете куб – воспринимается ли он как квадрат, шестиугольник или прямоугольник, в противоположность нормальному углу куба в 90-градусов. Вот отсюда начинается самое интересное, по крайней мере, для меня – надеюсь, что и для вас.

Вот кристаллы флюорита - плавикового шпата (Рис.6-35а и в). Плавиковый шпат находят почти любого мыслимого цвета, включая и прозрачный. В мире есть два крупнейших месторождения флюорита: одно в Соединённых Штатах и другое в Китае. Находят флюорит двух совершенно различных атомных структур: одна октаэдральная и другая кубическая. Этот фиолетовый флюорит составлен из крошечных сжатых вместе кубов. Они совершенно необработаны, они такими выросли. Прозрачный кристалл флюорита представляет собой настоящий октаэдр. Он не был так вырезан, но в данном случае он таким и не вырос. Обычно он попадается пластами, и если вы его уроните или ударите, он разломится по самым слабым связям, которые оказываются октаэдральными, потому что атомы выстроены в октаэдральную сетку. Если бы я уронил это на твёрдую поверхность, то оно бы раскололось на целую кучу маленьких октаэдрончиков.

Но что особенно интересно, так это то, что флюорит будет вырастать из одной фигуры в другую – из кубической в октаэдральную и опять наоборот. В своём естественном состоянии, если дать ему достаточно времени, кубический кристалл когда-то превратится в октаэдральный. И при наличии достаточного времени октаэдральный кристалл флюорита станет кубическим. Они колеблются во времени, сначала становясь одним, затем другим, и опять туда и обратно через очень длинные периоды времени. Геологи обнаружили некоторые кристалл-лы флюорита в процессе изменения, но им было непонятно, как это они так колеблются.

Oгранка многогранников

Одна книга по геологии пыталась объяснить такое изменение флюорита (Рис.6-36). Внизу справа вы видите куб. Если поровну срезать все его вершины, то это называется огранкой. Можно произвести огранку любого многогранника, то есть любую из этих многогранных форм. Проделывая это (в данном случае с кубом), можно срезать вершины, рёбра или грани, только срезать их надо так, чтобы все срезанные части были одинаковы.

Если произвести огранку этого куба отрезанием всех его вершин под углом в 45 градусов, то получится следующая фигура, находящаяся рядом слева. Если произвести её огранку ещё раз точно таким же образом, то получится опять следующая слева фигура. Проделав это ещё раз, вы получите октаэдр (последний слева). Теперь можно пойти назад другим путём, производя огранку углов октаэдра и проходить через всю эту процедуру до тех пор, пока опять не получится куб. Так в этой книге по геологии пытались пояснить, как же в самом деле флюорит меняет форму. В действительности, книга объясняет только то, как эта перемена могла бы происходить на уровне геометрии. Но в природе, при изменении флюорита имеет место нечто значительно более потрясающее. Чтобы составить другую сетку, на самом деле ионы вращаются и - расширяются или сжимаются!

Вот другой кристалл флюорита (Рис.6-37), один из моих собственных. Он очень велик, около четырёх футов по грани. Сейчас уже не часто увидишь такой большой. На случай, если вам не очень хорошо видно, я скажу, что в центре он поднимается к вершине. Кто-то положил его на подоконник, где на него падал солнечный свет, и - поскольку связи во флюорите так слабы, что когда на него упал солнечный свет - он раскололся, конечно же, вдоль октаэдральных атомных линий.

В верхнем правом углу Рис.6-38 находится куб. Следующий слева от него куб огранён по своим рёбрам. Последующая двойная огранка превратила эту латку-перелатку в додекаэдр. Это пример куба/додекаэдра в кристалла

На Рис.6-39 верхний кристалл, это куб серного колчедана – пирит. Таким он вырос, никто его не обрабатывал. Есть такой же, как этот, но огромный – в Силверадо, Колорадо, размером, я думаю, где-то около шести квадратных футов. Его просто извлекли из земли в виде совершенного куба. Этот маленький пирит по двумграням квадратен и по остальным прямоуголен. Нижний кристалл – это крошечная гроздь пиритовых додекаэдров. Некоторые из них почти совершенны – так они выросли в Перу. Если бы эта маленькая кучка была на достаточно долгое время оставлена в земле, то эти маленькие додекаэдрончики превратились бы в кубики; и по прошествии достаточного количества времени они бы опять стали додекаэдрами. Если взять додекаэдр (внизу слева на Рис.6-38) и произвести огранку его вершины, то он превратится в икосаэдр (рядом справа). Если продолжать огранку вершин, то получится октаэдр. Я могу долго продолжать заниматься этой огранкой. Существует тысячи способов, как это можно проделать. Каждая модель и кристалл, независимо от того, каким бы сложным он ни стал, будет превращаться в одну из пяти Платоновых тел, если вы станете правильно производить его огранку, выявляя врождённую природу пяти Платоновых тел в кристаллической структуре.

Маленькая пометка на полях: Если посмотреть внутрь огранённого по вершинам тетраэдра, сделанного из стекла или хрусталя или даже зеркал, то он будет отражать свет. Зеркальное отражение внутри него будет идеальным икосаэдром. Проверьте это.

Так можно продолжать и продолжать. Вы встретите что-то, что выглядит действительно странно, будто это никак не может быть основано на чём-то логическом, но всё, что вам следует сделать, это немного позаниматься геометрией, и каждый раз вы будете обнаруживать, что оно произошло из одной из пяти Платоновых тел. Исключения не известны. Независимо от того, какова модель кристалла, она всегда основана на Платоновом теле. Кристаллические структуры являются деятельностью пяти Платоновых тел, вышедших из Плода Жизни, из Куба Метатрона. Если вы хотите увидеть больше таких кристаллов, можете найти очень много в книге Чарльза А.Соррелла «Камни и Минералы» (Сharles A.Sorell, Rocks and Minerals).

Есть ещё кое-что, о чём я хочу поговорить, вернувшись к Рис.6-38, это «Различные возможности огранки». При огранке октаэдра отрезанием всех вершин так, чтобы срезы оказались под углом в 90 градусов друг относительно друга (показано на фигуре А), получается форма, находящаяся от неё слева. Если нарисовать это на плоскости, то получится квадрат с ромбом посередине (Рис.6-40). Эта модель, как оказывается, связана с нашим сознанием, с самой природой того, чем мы являемся.

Кубическое равновесие

seq.deutsch-service.ru referattgv.nugaspb.ru referatwlo.nugaspb.ru loss.mfk-millenium.ru Главная Страница