Дифференциальное уравнение движения физического маятника

Основная статья: Приведённая длина

Пренебрегая сопротивлением среды, дифференциальное уравнение колебаний физического маятника в поле силы тяжести записывается следующим образом:

.

Полагая , предыдущее уравнение можно переписать в виде:

.

Последнее уравнение аналогично уравнению колебаний математического маятника длиной . Величина называется приведённой длиной физического маятника.

Определения

· — угол отклонения маятника от равновесия;

· — начальный угол отклонения маятника;

· — масса маятника;

· — расстояние от точки подвеса до центра тяжести маятника;

· — радиус инерции относительно оси, проходящей через центр тяжести.

· — ускорение свободного падения.

Момент инерции относительно оси, проходящей через точку подвеса:

.

Вопрос №14

Основные законы гидростатики:

Закон Паскаля :Давление, производимое на жидкость или газ, передается в любую точку без изменений во всех направлениях.

Закон Паскаля описывается формулой давления:

,

где — это давление,

— приложенная сила,

— площадь сосуда.

Из формулы мы видим, что при увеличении силы воздействия при той же площади сосуда давление на его стенки будет увеличиваться. Измеряется давление в ньютонах на метр квадратный или в паскалях (Па), в честь учёного, открывшего закон, Паскаля.

На основе закона Паскаля работают различные гидравлические устройства: тормозные системы, гидравлические прессы и др.

Закон Архимеда: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу жидкости (или газа) в объёме тела. Сила называется силой Архимеда:

где — плотность жидкости (газа), — ускорение свободного падения, а — объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности (равномерно движется вверх или вниз), то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

Барометрическая формула — зависимость давления или плотности газа от высоты в поле силы тяжести.

Для идеального газа, имеющего постоянную температуру и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения одинаково), барометрическая формула имеет следующий вид:

где — давление газа в слое, расположенном на высоте , — давление на нулевом уровне ( ), — молярная масса газа, — универсальная газовая постоянная, — абсолютная температура. Из барометрической формулы следует, что концентрация молекул (или плотность газа) убывает с высотой по тому же закону:

где — масса молекулы газа, — постоянная Больцмана.

Барометрическая формула может быть получена из закона распределения молекул идеального газа по скоростям и координатам в потенциальном силовом поле (см.Статистика Максвелла — Больцмана). При этом должны выполняться два условия: постоянство температуры газа и однородность силового поля.

Постоя́нная Бо́льцмана ( или ) — физическая постоянная, определяющая связь между температурой и энергией. Названа в честь австрийского физика Людвига Больцмана, сделавшего большой вклад в статистическую физику, в которой эта постоянная играет ключевую роль. Её экспериментальное значение в Международной системе единиц (СИ) равно:

Дж/К[1].

Числа в круглых скобках указывают стандартную погрешность в последних цифрах значения величины. В естественной системе единиц Планка естественная единица температуры задаётся так, что постоянная Больцмана равна единице.

Универсальная газовая постоянная определяется как произведение постоянной Больцмана на число Авогадро, . Газовая постоянная более удобна, когда число частиц задано в молях.

Пусть идеальный газ находится в поле консервативных сил в условиях теплового равновесия. При этом концентрация газа будет различной в точках с различной потенциальной энергией, что необходимо для соблюдения условий механического равновесия. Так, число молекул в единичном объеме n убывает с удалением от поверхности Земли, и давление, в силу соотношения P = nkT, падает.

Если известно число молекул в единичном объеме, то известно и давление, и наоборот. Давление и плотность пропорциональны друг другу, поскольку температура в нашем случае постоянна. Давление с уменьшением высоты должно возрастать, потому что нижнему слою приходится выдерживать вес всех расположенных сверху атомов.

Исходя из основного уравнения молекулярно-кинетической теории: P = nkT, заменим P и P0 в барометрической формуле (2.4.1) на n и n0 и получим распределение Больцмана для молярной массы газа:

(2.5.1)

где n0 и n - число молекул в единичном объёме на высоте h = 0 и h.

Так как а , то (2.5.1) можно представить в виде

(2.5.2)

С уменьшением температуры число молекул на высотах, отличных от нуля, убывает. При T = 0 тепловое движение прекращается, все молекулы расположились бы на земной поверхности. При высоких температурах, наоборот, молекулы оказываются распределёнными по высоте почти равномерно, а плотность молекул медленно убывает с высотой. Так какmgh – это потенциальная энергия U, то на разных высотах U = mgh – различна. Следовательно, (2.5.2) характеризует распределение частиц по значениям потенциальной энергии:

, (2.5.3)

– это закон распределения частиц по потенциальным энергиям – распределение Больцмана. Здесь n0 – число молекул в единице объёма там, где U = 0.

Вопрос № 15

Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесиифаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл — энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости[1].

Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка. Коэффициент пропорциональности — сила, приходящаяся на единицу длины контура — называется коэффициентом поверхностного натяжения. Он измеряется в ньютонах на метр. Но более правильно дать определение поверхностному натяжению, как энергии (Дж) на разрыв единицы поверхности (м²). В этом случае появляется ясный физический смысл понятия поверхностного натяжения.

Проявления

Так как появление поверхности жидкости требует совершения работы, каждая среда «стремится» уменьшить площадь своей поверхности:

· в невесомости капля принимает сферическую форму (сфера имеет наименьшую площадь поверхности среди всех тел одинакового объёма).

· струя воды «сливается» в цилиндр.

· маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так каксила тяготения оказывается уравновешенной силой поверхностного натяжения.

· некоторые насекомые (например, водомерки) способны передвигаться по воде, удерживаясь на её поверхности за счёт сил поверхностного натяжения.

· На многих поверхностях, именуемых несмачиваемыми, вода (или другая жидкость) собирается в капли.

Лапласово давление- это давление под искревлённой поверхностью жидкости. представьте поверхность воды, из которой виднеется стеклянная трубка- она капилляр. величина и знак лапласового давления находятся по формулам, потому что при поднятии и при отпускании жидкости через капилляр, давление жидкости должно быть одиниково для всех уровней данного капилляра.

Пусть:

r- внутренний радиус поперечногог сечения кипилляра

r- плотность жидкости

g- ускорение свободного падения

Po- нормальное атмосферное давление

h- высота капилляра

Pл- лапласово давлениеъ

на поверхности жидкости давление Р=Ро. внутри капилляра: Р=Ро+rgh+Рл. приравняем части равенства и получим:

Рл=-rgh.

учтите- что под вогнутым мениском давление отрицательно, а под выпуклым- положительно. чем меньше радиус кривизны мениска, тем больше порд ним давление.

капиллярность — явление, подъема или опускания жидкости в капиллярах, заключающееся в способностижидкостей изменять уровень в трубках, узких каналах произвольной формы, пористых телах. В поле тяжести (или сил инерции, например при центрифугировании пористых образцов) поднятие жидкости происходит в случаях смачивания каналов жидкостями, например воды в стеклянных трубках, песке, грунте и т. п. Понижение жидкости происходит в трубках и каналах, не смачиваемых жидкостью, например ртуть в стеклянной трубке.

Благодаря капиллярности возможны жизнедеятельность животных и растений, различные химические процессы, бытовые явления (например, подъём керосина по фитилю в керосиновой лампе, вытирание рук полотенцем)

Когезия — связь между молекулами (атомами, ионами) внутри тела в пределах одной фазы. Когезия характеризует прочность тела и его способность противостоять внешнему воздействию.

Описание:

Основой когезии могут являться силы межмолекулярного взаимодействия, включая водородную связь, и/или силы химической связи. Они определяют совокупность физических и физико-химических свойств вещества: агрегатное состояние, летучесть,растворимость, механические свойства и т. д. Интенсивность межмолекулярного и межатомного взаимодействия, а, следовательно, и сил когезии резко убывает с расстоянием. Наиболее сильна когезия в твёрдых телах и жидкостях, то есть в конденсированных средах, где расстояния между молекулами (атомами, ионами) малы, порядка нескольких ангстрем. В газахсредние расстояния между молекулами велики по сравнению с их размерами, поэтому когезия в них незначительна. Мерой интенсивности межмолекулярного взаимодействия служит плотность энергии когезии. Она эквивалентна работе удаления взаимно притягивающихся молекул на бесконечно большое расстояние друг от друга, что в первом приближении соответствует испарению или сублимации вещества.

Адгезия (от лат. adhaesio — прилипание) в физике — сцепление поверхностей разнородных твёрдых и/или жидких тел. Адгезия обусловлена межмолекулярными взаимодействиями (Ван-дер-Ваальсовыми, полярными, иногда —химическими или взаимной диффузией) в поверхностном слое и характеризуется удельной работой, необходимой для разделения поверхностей. В некоторых случаях адгезия может оказаться сильнее, чем когезия, то есть сцепление внутри однородного материала, в таких случаях при приложении разрывающего усилия происходит когезионный разрыв, то есть разрыв в объёме менее прочного из соприкасающихся материалов.

Наиболее известные адгезионные эффекты — капиллярность, смачиваемость/несмачиваемость, поверхностное натяжение, мениск жидкости в узком капилляре, трение покоя двух абсолютно гладких поверхностей. Критерием адгезии в некоторых случаях может быть время отрыва слоя материала определенного размера от другого материала в ламинарном потоке жидкости.

Вопрос №16

referatszo.nugaspb.ru likely.opsreferat.ru shoulder.okref.ru return.radioritual.ru Главная Страница