Число Рейнольдса. Критерий отсутствия вязкости.

Рассмотрим течение вязкой жидкости между двумя горизонтальными пластинами, расстояние между которыми равно h. Поскольку частицы жидкости "прилипают" к пластинам, то скорость слоев текущей жидкости будет различной. Качественно распределение скоростей слоев изображено на рис. 4.4. Если известна характерная скорость течения (например, скорость v на оси потока), то легко оценить силы вязкого трения. Согласно (4.3)

(4.6)


Отсюда следует, что силы вязкого трения убывают с увеличением расстояния между пластинами. В общем случае можно считать, что силы вязкости, возникающие в потоке, обратно пропорциональны квадрату характерного поперечного размера потока и пропорциональны скорости.

Рис. 4.4.


С точки зрения динамики (см. уравнение 4.5) при отсутствии внешних сил F вязкостью можно пренебречь, если силы давления -grad p значительно превосходят силы вязкости . На первый взгляд, при течении жидкости между параллельными пластинами (равно как и по трубе постоянного сечения), где градиенты давлений отсутствуют вовсе, вязкостью в принципе нельзя пренебречь. И все наши выводы о течении идеальной жидкости становятся неверными.
Однако надо принять во внимание, что из-за флуктуаций линии тока "норовят" искривиться, и частицы в них движутся с ускорением. Поэтому давления p1 и p2 по разные стороны изогнутой трубки тока будут различными: p2>p1 (рис. 4.5). Возникающие градиенты давления обеспечивают криволинейное течение жидкости:

(4.7)


Последнее уравнение является приближенным уравнением Навье-Стокса ( =0) и записано в отсутствии внешних сил. Тогда критерий малости сил вязкости сводится к неравенству

(4.8)


В гидродинамике очень часто используют понятие силы инерции Fи=- dv/dt. С точки зрения наблюдателя, движущегося вместе с частицей жидкости, она находится в покое, потому что силы давления, вязкости и инерции уравновешивают друг друга (см. 4.5):

(4.9)


Неравенство (4.8) означает, что силы вязкости значительно меньше сил инерции. В частном случае течения жидкости между пластинами силы инерции при искривлении трубок тока жидкости

(4.10)


где v2/h - характерное центростремительное ускорение. В общем случае, силы инерции обратно пропорциональны поперечному размеру потока и пропорциональны квадрату скорости. С учетом оценок (4.6) и (4.10) условие (4.8) перепишется следующим образом:

(4.11)


Здесь - число Рейнольдса, характеризующее отношение сил инерции и сил вязкости. Таким образом, текущую жидкость можно рассматривать как невязкую, если число Рейнольдса для такого течения Re>1. Однако и в этом случае вязкость играет вспомогательную роль. При не очень высоких скоростях течения силы вязкости "гасят" компоненты скорости жидкости, поперечные к потоку, препятствуя, тем самым, возникновению неустойчивого течения (см. ниже).

Рис. 4.5.


Дадим некоторые оценки течения жидкости по круглой трубе радиуса R. Число Рейнольдса в этом случае . Если принять радиус трубы R = 1 см и скорость течения v = 1 см/с, то для воды ( =103 кг/м3, при t=15 ) число Re=86. Это означает, что силы вязкости не существенны, и воду можно рассматривать как невязкую жидкость. Однако это приближение становится несправедливым, если радиус трубки уменьшить на два порядка, и Re=0,86<1. При таком течении распределение давлений и скоростей в потоке уже не подчиняется уравнению Бернулли. Еще в большей степени это относится к вязкому глицерину ( =1,4 кг/(м*с)). При течении воздуха по трубе ( =1,3 кг/м3, =1,8*10-5 кг/(м*с)) число Рейнольдса приблизительно на порядок меньше, чем при аналогичном течении воды. Это указывает на то, что силы вязкости при течении воздуха и других газов играют большую роль, чем при аналогичном течении воды.

Турбуле́нтность, устар. турбуле́нция (лат. turbulentus — бурный, беспорядочный), турбуле́нтное тече́ние — явление, заключающееся в том, что при увеличении скорости течения жидкости или газа в среде самопроизвольно образуются многочисленные нелинейные фрактальные волны и обычные, линейные различных размеров, без наличия внешних, случайных, возмущающих среду сил и/или при их присутствии. Для расчёта подобных течений были созданы различные модели турбулентности.

Турбулентность экспериментально открыта английским инженером Рейнольдсом в 1883 году при изучении течения несжимаемой жидкости (воды) в трубах.


Для возникновения турбулентности необходима сплошная среда, которая подчиняется кинетическому уравнению Больцмана, Навье — Стокса или пограничного слоя. Уравнение Навье — Стокса (в него входит и уравнение сохранения массы или уравнение неразрывности) описывает множество турбулентных течений с достаточной для практики точностью.

Обычно турбулентность наступает при превышении некоторого критического параметра, например числа Рейнольдса или Релея (в частном случае скорости потока при постоянной плотности и диаметре трубы и/или температуры на внешней границе среды).

При определённых параметрах турбулентность наблюдается в потоках жидкостей и газов, многофазных течениях, жидких кристаллах, квантовых Бозе- и Ферми- жидкостях, магнитных жидкостях, плазме и любых сплошных средах (например, в песке, земле, металлах). Турбулентность также наблюдается при взрывах звёзд, в сверхтекучем гелии, в нейтронных звёздах, в лёгких человека, движении крови в сердце, при турбулентном (т. н. вибрационном) горении.

Турбулентность возникает самопроизвольно, когда соседние области среды следуют рядом или проникают один в другой, при наличии перепада давления или при наличии силы тяжести, или когда области среды обтекают непроницаемые поверхности. Она может возникать при наличии вынуждающей случайной силы. Обычно внешняя случайная сила и сила тяжести действуют одновременно. Например, при землетрясении или порыве ветра падает лавина с горы, внутри которой течение снега турбулентно. Мгновенные параметры потока (скорость, температура, давление, концентрация примесей) при этом хаотично колеблются вокруг средних значений. Зависимость квадрата амплитуды от частоты колебаний (или спектр Фурье) является непрерывной функцией.

Турбулентность, например, можно создать:

· увеличив число Рейнольдса (увеличить линейную скорость или угловую скорость вращения потока, размер обтекаемого тела, уменьшить первый или второй коэффициент молекулярной вязкости, увеличить плотность среды);

· увеличив число Релея (нагреть среду);

· увеличить число Прандтля (уменьшить вязкость);

· задать очень сложный вид внешней силы (примеры: хаотичная сила, удар). Течение может не иметь фрактальных свойств.

· создать сложные граничные или начальные условия, задав функцию формы границ. Например, их можно представить случайной функцией. Например: течение при взрыве сосуда с газом. Можно, например, организовать вдув газа в среду, создать шероховатую поверхность. Использовать разгар сопла. Поставить сетку в течение. Течение может при этом не иметь фрактальных свойств.

· создать квантовое состояние. Данное условие применимо только к изотопу гелия 3 и 4. Все остальные вещества замерзают, оставаясь в нормальном, не квантовом состоянии.

· облучить среду звуком высокой интенсивности.

· с помощью химических реакций, например горения. Форма пламени, как и вид водопада может быть хаотичной.

При больших числах Рейнольдса, скорости потока от небольших изменений на границе зависят слабо. Поэтому при разных начальных скоростях движения корабля формируется одна и та же волна перед его носом, когда он движется с крейсерской скоростью. Нос ракеты обгорает и создаётся одинаковая картина разгара, несмотря на разную начальную скорость.

Фрактальный — означает самоподобный. У прямой линии фрактальная размерность равна единице. У плоскости равна двум. У шара трём. Русло реки имеет фрактальную размерность больше 1, но меньше двух, если рассматривать его с высоты спутника. У растений фрактальная размерность вырастает с нуля до величины больше двух. Есть характеристика геометрических фигур, называется фрактальная размерность. Наш мир нельзя представить в виде множества линий, треугольников, квадратов, сфер и других простейших фигур. И фрактальная размерность позволяет быстро характеризовать геометрические тела сложной формы. Например, у осколка снаряда.

Нелинейная волна — волна, которая обладает нелинейными свойствами. Их амплитуды нельзя складывать при столкновении. Их свойства сильно меняются при малых изменениях параметров. Нелинейные волны называют диссипативными структурами. В них нет линейных процессов дифракции, интерференции, поляризации. Но есть нелинейные процессы, например, самофокусировка. При этом резко, на порядки увеличивается коэффициент диффузии среды, перенос энергии и импульса, сила трения на поверхность.

То есть, в частном случае, в трубе с абсолютно гладкими стенками при скорости выше некоторой критической, в течение любой сплошной среды, температура которой постоянная, под действием только силы тяжести всегда самопроизвольно образуются нелинейные самоподобные волны и затем турбулентность. При этом нет никаких внешних возмущающих сил. Если дополнительно создать возмущающую случайную силу или ямки на внутренней поверхности трубы, то турбулентность также появится.

В частном случае нелинейные волны — вихри, торнадо, солитоны и другие нелинейные явления (например, волны в плазме — обычные и шаровые молнии), происходящие одновременно с линейными процессами (например акустическими волнами).

На математическом языке турбулентность означает, что точное аналитическое решение дифференциальных уравнений в частных производных сохранений импульса и сохранения массы Навье-Стокса (это закон Ньютона с добавлением сил вязкости и сил давления в среде и уравнение неразрывности или сохранения массы) и уравнение энергии представляет собой при превышении некоторого критического числа Рейнольдса, странный аттрактор. Они представляют нелинейные волны и обладают фрактальными, самоподобными свойствами. Но так как волны занимают конечный объём, какая-то часть области течения ламинарна.

При очень малом числе Рейнольса — это всем известные линейные волны на воде небольшой амплитуды. При большой скорости мы наблюдаем нелинейные волны цунами или обрушение волн прибоя. Например, крупные волны за плотиной распадаются на волны меньших размеров.

Вследствие нелинейных волн любые параметры среды: (скорость, температура, давление, плотность) могут испытывать хаотические колебания, изменяются от точки к точке и во времени непериодически. Они очень чувствительны к малейшим изменением параметров среды. В турбулентном течении мгновенные параметры среды распределены по случайному закону. Этим турбулентные течения отличаются от ламинарных течений. Но управляя средними параметрами, мы можем управлять турбулентностью. Например, изменяя диаметр трубы, мы управляем числом Рейнольдса, расходом топлива и скоростью заполнения бака ракеты.

Уравнения Навье — Стокса (обычные, а не усреднённые по какому-то интервалу времени) описывают и мягкую, и жёсткую потерю устойчивости течений. Их можно вывести тремя способами из общих законов сохранения: постулируя закон трения Ньютона(обобщённый), следуя методу Чепмена-Энскога и из метода Грэда.

При вязкости равной нулю уравнения сводятся к уравнению Эйлера. Точные решения уравнения Эйлера также хаотичны.

Общепринято считать проекцию вектора скорости на ось координат в турбулентном потоке, состоящей из средней или осредненной величины, за некоторое выбранное время, и плюс мгновенной составляющей:

U = Ucp + u' = 100 м/c + 0.5 м/с.

Здесь u' — пульсационная составляющая или пульсация. Удобно оказалось ввести степень турбулентности:

e = 100 %*u'/Ucp = 100 %*0.5/100 = 0,5 %.

Для трёх осей: e = (u' + v' + w')/Ucp.

Турбуленое течение с большим числом Рейнольдса называют развитой турбулентностью. При разных граничных условиях оно всегда приводит к созданию одного и того же профиля скоростей. Это свойство независимости параметров от числа Рейнольдса называют автомодельностью течения. Наблюдается экспериментально в струях или в пограничном слое.

Можно создать изотропную турбулентность, когда статистические параметры течения (функция распределения вероятности, дисперсия, моменты) одинаковы в направлении разных осей координат и не зависят от времени.

Теория однородной турбулентности (то есть, при очень больших числах Рейнольдса, когда её статистические параметры не зависят от времени и примерно постоянны в течении, но зависят от направления) была создана советскими учёными Обуховым и Колмогоровым. И использовалась затем во многих инженерных расчётах. Теория привела к созданию упрощённых полуэмпирических моделей течения: k-ε (ка-эпсилон) и многих других.

Большинство течений жидкостей и газов в природе (движение воздуха в земной атмосфере, воды в реках и морях, газа в атмосферах Солнца и звёзд и в межзвёздных туманностях и т. п.), в технических устройствах (в трубах, каналах, струях, в пограничных слоях около движущихся в жидкости или газе твёрдых тел, в следах за такими телами и т. п.) турбулентны из-за наличия источников энергии и импульса, наличия внешних возмущающих сил или отсутствия сил сопротивления трения в квантовых жидкостях.

При процессах горения или химических реакциях на явление турбулентности накладываются множество других физических и химических процессов. Например, эффект конвекции, автоколебаний, гистерезиса. В этом случае говорят о турбулентной конвекции. Обычно принимается, что переход от ламинарного течения к турбулентному происходит при достижении критического числа Рейнольдса (Re). Критическое значение числа Рейнольдса зависит от конкретного вида течения, его коэффициента вязкости, который зависит от температуры, которое зависит от давления (течение в круглой трубе, обтекание шара и т. п.). Например, для течения в круглой трубе . В последнее время показано, что это правомерно только для напорных потоков. Но удар по трубе, её резкое вращение или колебание могут вызвать появление турбулентности.

То есть, турбулентность может возникать самопроизвольно, а может в результате действий нескольких внешних сил.

При изучении течения жидкости через трубки малого диаметра французским врачом и учёным Пуазейлем в 1840—1842 гг. выведена формула, по которой можно рассчитать расход воды через трубу.[1][2] До Пуазейля исследованием движения вязкой жидкости через трубы малого диаметра занимался Хаген (1797—1884). При большом расходе формула оказалась неверной. Причина в том, что в трубе возникала турбулентность.

Стоксом, английским учёным-теоретиком были найдены решения уравнения движения вязкой жидкости для малых чисел Re (это второй закон Ньютона с добавками сил давления и сил вязкости), которые он вывел в 1845 г. для движения жидкости в круглой трубе. Затем он получил формулу силы сопротивления при равномерном движении шара в неограниченной жидкости в 1851 году. Её стали использовать для определения коэффициента динамической вязкости. Но решения совпали с опытом лишь при малых скоростях движения жидкости и диаметрах трубы и шара.

Причина этого расхождения была объяснена только опытами Рейнольдса в 1883 г. Он показал существование двух различных режимов движения жидкости — ламинарного и турбулентного — и нашёл один параметр — число Рейнольдса — который позволил предсказать, наличие турбулентности для данного течения в трубе. Если бы Стокс нашёл точные решения Навье-Стокса, он бы обнаружил турбулентность теоретически.

Это позволило Рейнольдсу в 1883 г. ввести положение, что течения одинакового типа (труба должна быть геометрически подобной) с одинаковым числом Рейнольдса подобны. Этот закон был назван законом подобия. Затем, на основе опытов, стала развиваться теория размерности и подобия.

Так как Хаген не знал, как выглядят уравнения Навье-Стокса, что такое число подобия Рейнольдса, то нельзя говорить, что он или Леонардо да Винчи открыл турбулентность. Они наблюдали хаотическое движение в воде. Но описать количественно, предсказать его наступление не могли. А подобие течения, рождение самоподобных структур, например вихрей, которые сами состоят из таких же вихрей — основное свойство турбулентности.

То есть Рейнольдс как бы открыл то, что уравнение для силы гравитации и закон Кулона подобны с разницей только в коэффициенте. А Хаген и Пуазейль только нашли отдельные параметры, которые входят в точное решение уравнения Навье-Стокса и влияют на течение.

Частичное описание развитой турбулентности в рамках математики XIX века предложил Л. Ричардсон в начале XX века. Мешая ложкой чай в стакане, мы создаём вихри размером порядка размера стакана, ложки. Вязкость действует на течение тем сильнее, чем меньше характерный размер течения. Под характерным размером понимают какой-то геометрический параметр, сильно влияющий на течение. Диаметр стакана, его высота, ширина ложки. При большом числе Рейнольдса на эти крупномасштабные движения молекулярная вязкость действует слабо.

Уравнение движения жидкости (Навье-Стокса) нелинейно, так как скорость жидкости переносится самой скоростью и эти вихри неустойчивы. Они дробятся на более мелкие вихри, те на более мелкие. В конце концов на малых размерах вступает в действие молекулярная вязкость, и самые мелкие вихри затухают за счёт неё. Эта представление назвали прямой каскад (или переход от больших масштабов в меньшие).

Турбулентность формально связана с биологическими объектами, с процессами митоза и роста некоторых раковых опухолей, с теорией радиоактивного распада, с процессами, происходящими на рынках акций.

Есть разница между понятием турбулентность и турбулентное течение. Термин турбулентное течение возник в гидравлике. Затем были открыты квантовые жидкости. Их вязкость всегда равна нулю. Если подсчитать для них число Рейнольдса, оно всегда равно бесконечности, когда проекция вектора скорости не равна нулю. Само турбулентное течение может присутствовать в системе очень мелких вихрей, в некоторых малых частях среды. Поэтому, средняя скорость течения равна нулю, когда квантовая жидкость покоится в сосуде. Число Рейнольдса не определено (в числителе нулевая скорость, в знаменателе нулевая вязкость).

Ламина́рное тече́ние (лат. lamina — пластинка, полоска) — течение, при котором жидкость или газ перемещается слоями без перемешивания и пульсаций (то есть беспорядочных быстрых изменений скорости и давления).

Ламинарное течение возможно только до некоторого критического значения числа Рейнольдса, после которого оно переходит в турбулентное. Переход от ламинарного к турбулентному состоянию происходит при разных скоростях, которые установить невозможно. При ламинарном течении могут существовать турбулентные области - пятна. Критическое значение числа Рейнольдса зависит от конкретного вида течения (течение в круглой трубе, обтекание шара и т. п.). Например, для течения в круглой трубе . Если труба некруглого сечения, то Reкр рассчитывается по гидравлическому диаметру dг=4F/χ, где F-площадь поперечного сечения трубы, χ-полный смоченный периметр.

Схематичное изображение ламинарного (a) и турбулентного (b) течения в плоском слое

Распределение скорости при ламинарном течении - параболическое. До 1917 года в российской науке пользовались термином Струйчатое течение.

Только в ламинарном режиме возможно получение точных решений уравнения движения жидкости (уравнений Навье-Стокса), например течение Пуазейля. В некоторых случаях для получения порогового числа Рейнольдса достаточно провести линейный анализ устойчивости — теоретический анализ устойчивости под воздействием бесконечно малых возмущений. Так, например, получены пороги для течения между параллельными плоскостями и течения Тейлора между вращающимися цилиндрами. Однако в некоторых случаях линейного анализа недостаточно: для течения в круглой трубе он приводит к абсолютной устойчивости, что опровергается экспериментами.

Орг.преп.
Я ушла на кухню от них, пока Джастин показывал всем малышку. Взяла телефонную трубку в руки и прислонилась спиной к стене. Прошло огромное количество гудков, пока трубку не сняли
Рівність, свобода, справедливість як аксіологічні аспекти права.
Динамика материальной точки и тела, движущегося поступательно
Тягово-економічні показники трактора
Проблемы глобальной экологии и выживания Человечества»
Розрахунок елементів таврового профілю
A) Translate the words and word combinations in bold type into Russian.
О некоторых вопросах применения судами Конституции Российской Федерации при осуществлении правосудия
Порядок розгляду спірних питань на ІІІ етапі конкурсу
Форма державного устрою – відображає адміністративно – територіальний устрій держави, співвідношення центральних і місцевих органів державної влади.
Тема 3. Природні зони своєї області.
Назовите признаки сформированности потребности в общении у ребенка по лисиной.
Тема 2. Технології банківського кредитування
Лекция: Понятие о гемотрансфузии. СистемаАВ0.Понятие о группе крови.Rh-фактор. Определение группы крови и Rh-фактора. 7 страница
Тема 18
Первая советская весна в деревне: Крестьянство Марийского края и земельный вопрос в 1918 году: Документы и материалы. Йошкар-Ола, 2002.
Развод, пережитый в любви, послужит хорошей подготовкой человека к следующему знакомству — если таков будет его выбор
Инструктаж и анализ ситуации.
Кристалізація евтектичних стопів
Точкова еластичність попиту за ціною, її розрахунок, переваги та недоліки
Система попередження пожеж і вибухів
Стратегії економічного розвитку. Елементи економічного розвитку
Главная Страница