Фибриллярные адгезивные белки

Внеклеточный матрикс содержит большое число адгезивных неколлагеновых белков, структурной особенностью которых является наличие доменов, способных специфически связываться с другими макромолекулами и рецепторами на поверхности клетки. Непременным компонентом доменов, обеспечивающих взаимодействие с клетками, является последовательность аминокислот АРГ-ГЛИ-АСП (R-G-D).

Фибронектин —высокомолекулярный гликопротеин. Существуют множественные формы фибронектина. Одна из них — фибронектин плазмы и других биологических жидкостей. Он принимает участие в механизмах свертывания крови и заживления ран. Фибронектины тканей располагаются на поверхности клеток, образуя фибронектиновые филаменты. Фибронектин ускоряет клеточную миграцию, обеспечивая взаимодействие клеток с матриксом.

Фибриллин —структурный компонент микрофибрилл, обеспечивающих образование эластиновых волокон. Он найден в хрусталике, периосте, аорте. При мутации гена, кодирующего синтез фибриллина, развивается синдром Марфана: эктопия хрусталика, арахнодактилия («паучьи» пальцы), поражение суставов.

Ламинин и энтактин — гликопротеины базальной мембраны. Они связываются не только между собой, но и с коллагеном, гепарансульфатом, поверхностью эпителиальных клеток, причем для связывания с различными веществами имеются свои домены.

Каждый тип соединительной ткани имеет свои специфические наборы молекул: кроме соответствующих изоколлагенов, имеются и специфические неколлагеновые белки.

В хрящевой: главный ПГ и минорные ПГ (фибромодулин — регулятор фибриллогенеза; бигликан — значение его пока неизвестно; декорин—способен связываться с коллагеном и играет роль ингибитора фибринолиза; белки с разной молекулярной массойи не очень изученными функциями, из известных функций — связывание с хондроцитами, кристаллами гидроксиапатита, коллагеном II для его фиксации к хондроцитам).

Схематическое строение главного протеогликана хряща:

В костной: индукторы и ингибиторы остеогенеза, инициаторы минерализации — остеокальцин, остеонектин, остеопонтин, костный кислый гликопротеин, костный сиалопротеин, тромбоспондин.

ВВЕДЕНИЕ В ЭНЗИМОЛОГИЮ. СВОЙСТВА ФЕРМЕНТОВ

Катализатор — это вещество, которое ускоряет химическую реакцию, но само в ходе этой реакции не расходуется.

Энзим(en zyme — в дрожжах), фермент (fermentum — закваска) — термины для обозначения биологических катализаторов белковой природы.

Рибозим —это биологический катализатор рибонуклеиновой природы.

Субстратом (S) называют вещество, химические превращения которого в продукт (Р) катализирует фермент (Е).

Чтобы произошла химическая реакция, необходимы следующие условия:

1) молекулы должны сблизиться (столкнуться);

2) запас энергии молекул в момент столкновения должен быть не ниже энергетического барьера реакции.


Классификация и номенклатура ферментов

В начале ХХ в. предложили называть ферменты по названию субстрата с добавлением суффикса -аза (amylum — амилаза, lipos — липаза, protein — протеиназа). В 1961 г. Ме­ждународный Совет Биохимиков (IUB) предложил положить в основу названия и классификации ферментов тип химической реакции и ее механизм. Все ферменты разделили на 6 классов, каждый из ко­торых состоит из 4–13 подклассов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы (синтетазы).

1. Оксидоредуктазы — это ферменты, катализи­рующие окислительно-восстано-вительные реакции с участием двух субстратов А и В: А red. + Вox à Аox + Вred

2. Трансферазы — это ферменты, катализирующие реакции межмолекулярного переноса группы Х (отличной от атома водорода) с субстрата А на субстрат В: А-Х + В
А + В-Х.

3. Гидролазы это ферменты, которые катализируют расщепление внутримолекулярных связей с участием воды. Например, Ацетилхолин + Н2О <–> Холин + Уксусная кислота.

4. Лиазы — это ферменты, отщепляющие группы от субстратов по негидролитическому механизму с образованием двойных связей и присоединением веществ по месту двойной связи.

5. Изомеразы катализируют превращения различных типов оптических, геометрических и по­зиционных изомеров.

6. Лигазы катализируют соединение двух молекул, сопряженное с разрывом пирофосфатной связи АТФ или другого макроэргического соединения.

Каждый фермент по классификации ферментов (КФ, ЕС) обозначается че­тырьмя цифрами (шифр фермента): 1— класс, 2 — подкласс. 3 — подподкласс, 4 — номер фермента в спи­ске подподкласса. Так, например, КФ 2.7.1.1 означает: класс 2 (трансферазы), подкласс 7 (перенос фос­фата), подподкласс 1 (алкогольная группа — акцептор фосфата). Конечное на­звание — гексокиназа, или АТФ:D-гексоза-6-фосфотрансфераза, фермент, ката­лизирующий перенос фосфата с АТФ на гидроксильную группу у шестого углеродного атома глюкозы.

Строение фермента

По сложности строения белковой молекулы выделяют простые (однокомпонентные) ферменты, состоящие только из белковой части, и сложные (двухкомпонентные) ферменты, имеющие кроме белковой части (апофермента) и небелковую часть (кофермент). В этом случае сложный фермент часто называют холофермент.

Кофермент часто называют кофактором или простетической группой. Отличие заключается в характере связывания с апоферментом. Кофермент связывается с ним нековалентными связями, а кофактор (простетическая группа) — ковалентными.

Коферменты выполняют следующие функции: а) являются посредниками между ферментом и субстратом; б) непосредственно участвуют в акте катализа, выполняя чаще всего роль промежуточного переносчика групп, участвующих в реакции; в) стабилизируют апофермент.

Роль коферментов могут выполнять как органические, так и неорганические соединения. Различают: а) коферменты алифатического ряда (липоевая кислота); б) коферменты ароматического ряда (убихинон); в) коферменты — производные водорастворимых витаминов (ТПФ, ПФ); г) коферменты-нуклеотиды (НАД+, ФАД); д) коферменты-металлы (Zn, Co, Mg).

В строении белковой части фермента можно выделить ряд функциональных доменов, обеспечивающих главные функции фермента: а) домен, обеспечивающий связь с коферментом (в двухкомпонентных ферментах); б) домен, обеспечивающий взаимодействие с регулятором (регулируемые ферменты) и др. Обязательным для всех ферментов является домен — активный центр фермента. Он образуется из остатков аминокислот, находящихся в составе различных участков полипептидной цепи или различных полипептидных цепей, но пространственно сближающихся при образовании пространственной структуры белка-фермента. В активном центре выделяют: а) способствующие группы; б) контактный (якорный) участок; в) каталитический участок; г) вспомогательные группы.

Белковая природа ферментов придает им ряд особенностей, отличающих их от обычных катализаторов. Эти особенности ферментов называют общими свойствами ферментов. К ним относятся:

▪ высокая молекулярная активность (ферменты могут ускорять реакцию в 108–1012 раз);

▪ высокая специфичность ферментов к субстратам (субстратная специфичность) и к типу катализируемой реакции (реакционная специфичность);

▪ высокая чувствительность ферментов к неспецифическим физико-химическим факторам среды — температуре, рН, ионной силе раствора и т. д.;

▪ высокая чувствительность к химическим реагентам;

▪ возможность регуляции активности.

Важное условие, характеризующее действие фермента, — специфичность взаимодействия. Различают несколько типов специфичности: а) абсо­лютная — фермент катализирует превращение строго определенного вещества (уреаза расщепляет только мочевину на СО2 и NH3); б) стереохимическая — фермент катализирует превращение только одного стереоизомера при наличии рацемата (L-оксидазы превращают L-аминокислоты, но не D-амино-кислоты); в) групповая абсолютная специфичность — фер­мент катализиpyет превращения группы субстратов, имеющих одинаковую химическую группу, связанную одним типом химических связей (например, метилэстеразы действуют на субстраты, в которых метильная группа связана эфирной связью); г) групповой относительной специфичностью обладают ферменты, для которых важен только тип связи. Существуют две модели, объясняющие специфичность: модель Фишера — «ключ – замок» и модель Кошланда — индуцированного взаимодействия.

Главная Страница