ТАБЛИЦЯ ОСНОВНИХ ЗАКОНІВ ЛОГІКИ І ЗАКОНІВ ЛОГІКИ ВИСЛОВЛЮВАНЬ

№ п/п Назва закону Його формулювання Формула Її прочитання
Закон тотожності Кожне висловлювання тотожне саме собі А →А; А ↔А «Якщо А, тоді А»; «А тоді і тільки тоді, коли А»
Закон несуперечнос­ті Жодне висловлювання не може бути істинним одночасно із своїм запереченням «Неправильно, що А і не-А»
Закон виключеного третього 3 двох суперечних суджень одне неодмінно є істинним, не дано. «А або не-А»
Закон достатньої підстави Будь-яка істинна думка повинна бути достатньо обгрунтованою Формального відобра­ження не має
Закон подвійного речення:
5.1 Закон зняття подвійного заперечення Заперечення заперечення дає ствердження Якщо неправильно, що не-А, тоді А»
5.2 Закон введення подвійного заперечення Із ствердження випливає його подвійне заперечення «Якщо А, то хибно, ніби не-А»
5.3 Поний закон подвійного заперечення Подвійне заперечення тотожне ствердженню «Хибно, що не-А тоді і тіль­ки тоді, коли А»
Закони ідемпотентос­ті:
6.1 Закон ідемпотентості для кон'юнкції Повтор висловлювання через сполучник кон'юнкції «і» є рі­внозначним самому висловлю­ванню (А ^ А) ↔ А «А і А тоді і тільки тоді, ко­ли А»
6.2 Закон ідемпотентості для диз'юнкції Повтор висловлювання через сполучник диз'юнкції «або» є рівнозначним самому вислов­люванню (А v А) ↔ А А або А тоді і тільки тоді, коли А»
Закони кому­тативності:
7.1 Закон кому­тативності для кон'юнкції Можна міняти місцями вислов­лювання, зв'язані сполучни­ком кон'юнкції «і» (АvВ)↔(ВvА) «А і В тоді і тільки тоді, ко­ли В і А»
7.2 Закон кому­тативності для диз'юнкції Можна міняти місцями вис­ловлювання, зв'язані сполучни­ком диз'юнкції «або» (АvВ)↔(ВvА) «А або В тоді і тільки тоді, коли В або А»
Закони контрапозиції (про­стої і складної):
8.1 Перший закон простої контрапозиції Якщо з першого вис­ловлюван­ня випли­ває друге висловлю­вання, тоді із запере­чення дру­гого вис­ловлювання випли­ває заперечення пер­шого вислов­лювання (А→В)→( ) «Коли відомо, що якщо А, то В, тоді якщо не-В. то не-А»
8.2 Другий закон простої контрапозиції Якщо із заперечення першого висловлювання випливає запе­речення другого висловлюван­ня, то з другого висловлювання випливає перше ( )→(В→А) «Коли відомо, що якщо не-А, то не-В, тоді якщо В, то А»
8.3 Третій закон простої кон­трапозиції Якщо із першого висловлювання випливає заперечен­ня другого висловлю­вання, то з дру­гого висловлювання випливає заперечен­ня першого вислов­лювання (А→ )→(В→ ) «Коли відомо, що якщо А, то не-В, тоді якщо В, то не-А»
8.4 Четвертий закон простої контрапозиції Якщо із заперечення першого висловлю­вання випливає друге висловлювання, то із запере­чення другого висловлювання випливає перше висловлювання ( →В)→( →А) «Коли відомо, що якщо не-А, то В, тоді якщо не-В, то А»
8.5 Перший закон складної контрапозиції 3 першого і другого висловлю­вань випливає третє висловлю­вання тоді і тільки тоді, коли 3 першого вислов­лювання і запе­речення третього висловлюван­ня випливає заперечен­ня дру­гого вислов­лювання «Коли відомо, що з А і В ви­пливає С, то тоді і тільки то­ді з А і не -С випливає не -В»
8.6 Другий закон складної контрапозиції 3 першого вислов­люван­ня ви­пливає друге або третє вислов­лювання тоді і тільки тоді, коли із заперечення другого висловлю­вання випливає заперечен­ня першого вислов­лювання або третє висловлювання «Коли відомо, що якщо А, то В або С, то тоді і тільки тоді з не-В випливає не-А або С»
9. Закони асоціа­тивності:
9.1 Закон асоціативності для кон'юнкції Висловлювання, з'єдна­ні логі­чним сполучником кон'юнк­ції «і», мож­на по-різному поєдну­вати за допо­могою дужок ((А^В)^С)↔(А^(В^С)) «(А і В) і С тоді і тільки тоді, коли А і (В і С)»
9.2 Закон асоціативності для диз'юнкції Висловлювання, з'єд­на­ні логі­чним спо­луч­ником диз'юнк­ції «або», можна по-різ­ному поєд­нувати за допомогою дужок ((А В) С)↔ (А (В С)) «(А або В) або С тоді і тіль­ки тоді, коли А або (В або С)»
Закони дистрибутив­ності:
10.1 Закон дистрибутивності для кон'юнкції відносно диз'юнкції Дозволяється у формулах роз­поділяти кон'юнкцію відносно диз'юнкції ((А^(В^С)↔((А ^В) (А^С)) «А і (В або С), якщо і тільки якщо (А і В) або (А і С)»
10.2 Закон дистрибутив­ності для диз'юнкції відносно кон'юнкції Дозволяється у формулах роз­поділя­ти диз'юнкцію від­носно кон'юнкції ((А (В^С)↔ ((А В) ^ (А С)) «А або (В і С), якщо і тільки якщо (А або В) і (А або С)»
Закони де Моргана:
11.1 Перший закон де Моргана Заперечення кон'юнкції вислов­лювань еквівалентне диз'юнкції запере­чень цих вислов­лювань ↔( ) «Хибно, що А і В тоді і тіль­ки тоді, коли хибно, що А. або хибно, що В»
11.2 Другий закон де Моргана Заперечення диз'юнкції вислов­лювань еквівалентне кон'юнкції запере­чень цих вислов­лювань ↔( ) «Хибно, що А або В тоді і тільки толі, коли хибно, що А і хибно ні" Пі




Тема 6. Умовивід

rrv.deutsch-service.ru ufv.deutsch-service.ru referatsqq.nugaspb.ru vnb.deutsch-service.ru Главная Страница